首页|杏悦2注册|杏悦2娱乐|杏悦2平台|杏悦2登录|首页
首页|杏悦2注册|杏悦2娱乐|杏悦2平台|杏悦2登录|首页
全站搜索
文章正文
红彩娱乐-招商
作者:an888    发布于:2022-05-11 15:22    文字:【】【】【
摘要:红彩娱乐-招商。(2)在染料废水、表而活性剂、农药废水、含油废水、氰化物废水、制药废水、有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应,使其转化为无机小分

  红彩娱乐-招商。(2)在染料废水、表而活性剂、农药废水、含油废水、氰化物废水、制药废水、有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应,使其转化为无机小分子,达到完全无害化的目的。

  (4)可以破坏氰化物,以及电镀常用的各种有机螯合剂和添加剂,而达无害化。

  (6)不仅可以破坏稀溶液(废水)中的有机物,而且可以破坏浓溶液(槽液)中的有机物。

  (1)紫外光的吸收范围较窄,光能利用率较低,其效率还会受催化剂性质、紫外线波长和反应器的限制,短波紫外线 A)比长波的效果好,但短波紫外光较难获得。

  (2)光催化氧化需要解决透光度的问题,因为某些废水(如印染废水)中的一些悬浮物和较深的色度都不利于光线的透过,会影响光催化效果。

  (3)目前使用的催化剂多为纳米颗粒(太大时催化效果不好),回收困难,而且光照产生的电子一空穴对易复合而失活。

  主要是根据废水中所含悬浮物的比重不同利用物理作用而使之分离,可重力分离、离心分离、过滤、蒸发结晶等,其目的是去除悬浮物、胶装物质。

  主要通过化学反应的作用,转化、分离、回收废水中的污染物质,该方法包括中和法、混凝法、化学沉淀处理法和氧化还原处理法,其目的是调整PH值,可以去除悬浮物、胶状和溶解性物质。

  主要是利用微生物的代谢作用除去废水中有机污染物的方法,常用方法有活性污泥法、生物膜法、氧化塘法、污泥消化法等,可以去除胶体和溶解性物质。

  1、工业废水直接流入渠道,江河,湖泊,污染地表水,如果毒性较大会导致水生动植物的死亡甚至绝迹;

  3、如果周边居民采用被污染的地表水或地下水作为生活用水,会危害身体健康,重者死亡;

  6、工业废水中的有毒有害物质会被动植物的摄食和吸收作用残留在体内,而后通过食物链到达人体内,对人体造成危害。

  含N、S及卤素类的有机废液处理。此类废液包含的物质:吡啶、喹啉、甲基吡啶、氨基酸、酰胺、二甲基甲酰胺、二硫化碳、硫醇、烷基硫、硫脲、硫酰胺、噻吩、二甲亚砜、氯仿、四氯化碳、氯乙烯类、氯苯类、酰卤化物和含N、S、卤素的染料、农药、颜料及其中间体等等。对其可燃性物质,用焚烧法处理。但必须采取措施除去由燃烧而产生的有害气体(如SO2、HCl、NO2、二恶英等)。对多氯联苯之类物质,因难以燃烧而有一部分直接被排出,要加以注意。对难于燃烧的物质及低浓度的废液,用溶剂萃取法、吸附法及水解法进行处理。但对氨基酸等易被微生物分解的物质,经用水稀释后,即可排放。含酸、碱、氧化剂、还原剂的废液处理。此类废液包括:含有硫酸、盐酸、硝酸等酸类和氢氧化钠、碳酸钠、氨等碱类,以及过氧化氢等过氧化物类氧化剂与硫化物、联氨等还原剂的有机类废液。首先,按无机类废液的处理方法,把它分别加以中和。然后,若有机类物质浓度大时,用焚烧法处理(保管好残渣)。能分离出有机层和水层时,将有机层焚烧,对水层或其浓度低的废液,则用吸附法、溶剂萃取法或氧化分解法进行处理。但是,对其易被微生物分解的物质,用水稀释后,即可排放。此类废液包括:苯、已烷、二甲苯、甲苯、煤油、轻油、重油、润滑油、切削油、机器油、动植物性油脂及液体和固体脂肪酸等物质的废液。对其可燃性物质,用焚烧法处理。对其难于燃烧的物质及低浓度的废液,则用溶剂萃取法或吸附法处理。对含机油之类的废液,含有重金属时,要保管好焚烧残渣。含石油、动植物性油脂的废液处理。此处理方式与含酸、碱、氧化剂、还原剂的废液处理方式相同。含有机磷的废液处理。此类废液包括:含磷酸、亚磷酸、硫代磷酸及膦酸酯类,磷化氢类以及磷系农药等物质的废液。对其浓度高的废液进行焚烧处理(因含难于燃烧的物质多,故可与可燃性物质混合进行焚烧)。对浓度低的废液,经水解或溶剂萃取后,用吸附法进行处理。含酚类物质的废液处理。此类废液包含的物质:苯酚、甲酚、萘酚等。对其浓度大的可燃性物质,可用焚烧法处理。而浓度低的废液,则用吸附法、溶剂萃取法或氧化分解法处理。

  制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一,如何处理该类废水是当今环境保护的一个难题。

  制药废水的处理方法可归纳为以下几种:物化处理、化学处理 、生化处理 以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。

  根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。

  该技术是目前国内外普遍采用的一种水质处理方法,它被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。刘明华等以其研制的一种高效复合型絮凝剂F-1处理急支糖浆生产废水,在 pH为6.5, 絮凝剂用量为300 mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于PAC(粉末活性炭)、聚丙烯酰胺(PAM)等单一絮凝剂。

  气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。

  常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示, 吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。

  膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。朱安娜等采用纳滤膜对洁霉素废水进行分离实验,发现既减少了废水中洁霉素对微生物的抑制作用,又可回收洁霉素。

  该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。

  1.2 化学处理应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。

  工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。楼茂兴等[9]采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%,最终出水达到国家《污水综合排放标准》(GB8978—1996)一级标准。

  亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大加强。程沧沧等[10]以TiO2为催化剂,9 W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05 mg/L降至0.41 mg/L。

  1.2.3采用该法能提高废水的可生化性,同时对COD有较好的去除率。如Balcioglu等对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。

  又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等[13]用超声波-好氧生物接触法处理制药废水,在超声波处理60 s,功率200 w的情况下,废水的COD总去除率达96%。

  生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧-厌氧等组合方法。

  由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。

  深井曝气是一种高速活性污泥系统,该法具有氧利用率高、占地面积小、处理效果佳、投资少、运行费用低、不存在污泥膨胀、产泥量低等优点。此外,其保温效果好,处理不受气候条件影响,可保证北方地区冬天废水处理的效果。东北制药总厂的高浓度有机废水经深井曝气池生化处理后,COD去除率达92.7%,可见用其处理效率是很高的,而且对下一步的治理极其有利,对工艺治理的出水达标起着决定性作用。

  AB法属超高负荷活性污泥法。AB工艺对BOD5、COD、SS、磷和氨氮的去除率一般均高于常规活性污泥法。其突出的优点是A段负荷高,抗冲击负荷能力强,对pH和有毒物质具有较大的缓冲作用,特别适用于处理浓度较高、水质水量变化较大的污水。杨俊仕等采用水解酸化-AB生物法工艺处理抗生素废水,工艺流程短,节能,处理费用也低于同种废水的化学絮凝-生物法处理方法。

  该技术集活性污泥和生物膜法的优势于一体,具有容积负荷高、污泥产量少、抗冲击能力强、工艺运行稳定、管理方便等优点。很多工程采用两段法,目的在于驯化不同阶段的优势菌种,充分发挥不同微生物种群间的协同作用,提高生化效果和抗冲击能力。在工程中常以厌氧消化、酸化作为预处理工序,采用接触氧化法处理制药废水。哈尔滨北方制药厂采用水解酸化-两段生物接触氧化工艺处理制药废水,运行结果表明,该工艺处理效果稳定、工艺组合合理。随着该工艺技术的逐渐成熟,应用领域也更加广泛。

  SBR法具有耐冲击负荷强、污泥活性高、结构简单、无需回流、操作灵活、占地少、投资省、运行稳定、基质去除率高、脱氮除磷效果好等优点,适合处理水量水质波动大的废水。王忠用SBR工艺处理制药废水的试验表明:曝气时间对该工艺的处理效果有很大影响;设置缺氧段,尤其是缺氧与好氧交替重复设计,可明显提高处理效果;反应池中投加PAC的SBR强化处理工艺,可明显提高系统的去除效果。近年来该工艺日趋完善,在制药废水处理中应用也较多,邱丽君等采用水解酸化-SBR法处理生物制药废水,出水水质达到GB8978-1996一级标准。

  目前国内外处理高浓度有机废水主要是以厌氧法为主,但经单独的厌氧方法处理后出水COD仍较高,一般需要进行后处理(如好氧生物处理)。目前仍需加强高效厌氧反应器的开发设计及进行深入的运行条件研究。在处理制药废水中应用较成功的有上流式厌氧污泥床(UASB)、厌氧复合床(UBF)、厌氧折流板反应器(ABR)、水解法等。

  UASB反应器具有厌氧消化效率高、结构简单、水力停留时间短、无需另设污泥回流装置等优点。采用UASB法处理卡那霉素、氯酶素、VC、SD和葡萄糖等制药生产废水时,通常要求SS含量不能过高,以保证COD去除率在85%~90%以上。二级串联UASB的COD去除率可达90%以上。

  (2)UBF法买文宁等将UASB和UBF进行了对比试验,结果表明,UBF具有反应液传质和分离效果好、生物量大和生物种类多、处理效率高、运行稳定性强的特征,是实用高效的厌氧生物反应器。

  水解池全称为水解升流式污泥床(HUSB),它是改进的UASB。水解池较之全过程厌氧池有以下优点:不需密闭、搅拌,不设三相分离器,降低了造价并利于维护;可将污水中的大分子、不易生物降解的有机物降解为小分子、易生物降解的有机物,改善原水的可生化性;反应迅速、池子体积小,基建投资少,并能减少污泥量。近年来,水解-好氧工艺在制药废水处理中得到了广泛的应用,如某生物制药厂采用水解酸化-二段式生物接触氧化工艺处理制药废水,运行稳定,有机物去除效果显著,COD、BOD5和SS的去除率分别为90.7%、92.4%和87.6%。

  由于单独的好氧处理或厌氧处理往往不能满足要求,而厌氧-好氧、水解酸化-好氧等组合工艺在改善废水的可生化性、耐冲击性、投资成本、处理效果等方面表现出了明显优于单一处理方法的性能,因而在工程实践中得到了广泛应用。如利民制药厂采用厌氧-好氧工艺处理制药废水,BOD5去除率达98%,COD去除率达95%,处理效果稳定;肖利平等采用微电解-厌氧水解酸化-SBR工艺处理化学合成制药废水,结果表明,整个串联工艺对废水水质、水量的变化具有较强的耐冲击能力,COD去除率可达86%~92%,是处理制药废水的一种理想的工艺选择;胡大锵等在对医药中间体制药废水的处理中采用水解酸化-A/O-催化氧化-接触氧化工艺,当进水COD为12 000 mg/L左右时,出水COD达300 mg/L以下;许玫英等采用生物膜-SBR法处理含生物难降解物的制药废水,COD的去除率能达到87.5%~98.31%,远高于单独的生物膜法和SBR法的处理效果。

  此外,随着膜技术的不断发展,膜生物反应器(MBR)在制药废水处理中的应用研究也逐渐深入。MBR综合了膜分离技术和生物处理的特点,具有容积负荷高、抗冲击能力强、占地面积小、剩余污泥量少等优点。白晓慧等采用厌氧-膜生物反应器工艺处理COD为25 000 mg/L的医药中间体酰氯废水,选用杭州化滤膜工程公司生产的ZKM-W0.5T型膜组件,系统对COD的去除率均保持在90%以上;Livinggston等利用专性细菌降解特定有机物的能力,首次采用了萃取膜生物反应器处理含3,4-二氯苯胺的工业废水,HRT为2 h,其去除率达到99%,获得了理想的处理效果。尽管在膜污染方面仍存在问题,但随着膜技术的不断发展,将会使MBR在制药废水处理领域中得到更加广泛的应用。

  制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。

  预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具体工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。如陈明辉等采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。

  推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益;某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回[33],实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。

  关于处理制药废水的研究已有不少报道,但由于制药行业原料及工艺的多样性,排放的废水水质千差万别,所以制药废水并没有成熟统一的治理方法,具体选择哪种工艺路线取决于废水的性质。根据该废水的特点,一般应通过预处理以提高废水的可生化性并初步去除污染物,再结合生化处理。目前,开发经济、有效的复合水处理单元是亟待解决的问题。同时,应加强清洁生产的研究,并在处理前期考虑废水是否有回收利用的价值和适当的途径,以达到经济效益和环境效益的统一。

  抗生素生产废水抄是一类水质水量变化大、成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水.抗生素生产废水的处理一直是污水治理领域的一个难题,是国内外水处理的难点和热点。近年来,经过环保工作者坚持不懈的努力,抗生素废水治理有了一定程度的进展,目前,绝大多数抗生素企业基本都能达到污水管网排放标准。近年来,随着国家环境形势日渐严峻,国内很多地区把能达到一级A排放标准作为企业验收标准,随之而来,对于抗生素废水深度处理的研究成了近年来的热门话题。归纳起来,有如下三种方法:

  1、芬顿+BAF处理工艺:此方法流程简单,操作方便,易调试,但投资较大,使用的硫酸、液碱均为危化品,且BAF池易受到冲击造成运行不稳定。

  2、光催化技术:此方法初期效果非常明显,但运行成本高,且其所用灯光设备易被污泥糊住,影响透光性,目前尚无方法解决此难题,研究处于低谷。

  3、三维电极技术:此方法不需投加药剂,反应条件温和,氧化能力较强,但电极表面镀层容易脱落,造成运行管理较为困难。

  光催化氧化的优点: (1)反应条件温和、氧化能力强。 (2)在染料废水、表而活性剂、农药废内水、含油容废水、氰化物废水、制药废水、有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应,使其转化为无机小分子,达到完全无害化的目的。

  使用化学反应或者是物理化学作用来处理回收可溶性废物或者是胶状物质。比如说中和法使用在中和酸性或者是碱性废水。萃取法使用可溶性废物在两相作用中溶解度不同的“分配”,能够回收酚类和重金属等。

  利用物理作用对废水中的污染物进行处理、分离和回收。例如,沉淀法用于去除水中相对密度大于1的悬浮固体。过滤方式可以去除水中的悬浮物。蒸发法采用非挥发性和可溶性物质在浓缩废水中进行处理,此外还有离心分离法、气浮法、高梯度磁法等。

  使用微生物的生活作用来处理废水中的有机污染物。比如生物过滤法和活性污泥法来针对生活污水或者是有机生产废水进行处理,使得有机物转化降解成为无机盐实现净化。另外,还有生物膜法、生物塘法等。

  使用在有机质处理。污水灌溉,慢速下渗,快速下渗。由于不一样的污水处理工艺所以选择的原则也不一样,通常会更具污水处理单位的水量,污染物、处理单位电耗、成本、占地面积、管理维护难易程度。

  其中膜分离技术是今年发展迅速,应用广泛的高新技术,应用于各个行业,它主要是根据膜的选择透过性来对污水进行分离,分级,提纯和富集。但是膜容易形成附着层,使得膜通量显著降低,因此,寻求廉价易得,易清洗的膜组件,是当前解决膜技术缺陷的关键。

  磁分离技术应用于污水处理,可以算得上是一门新兴的技术,磁分离是物理方法,利用磁力把废水中有磁性的悬浮颗粒与废水分离,它具有很多优点,占地面积小,只需要一般沉淀池的5%,可处理废水种类特别多,处理后污泥含水率低,易脱水。

  高级氧化技术主要包括Fenton类氧化法,电化学法,光化学氧化法,光催化氧化法,声化学氧化法和臭氧化法。氧化技术已经在制药废水、印染废水、工业废水和杀菌消毒方面得到一定的应用。

  一种用钙的化合物作为铁化合物或铝化合物光催化剂的添加剂的改进的光催化处理废水的方法。特别是用于废水中有害物质酚的处理。将一定量的光催化剂(如氧化铁或氧化铝)和含钙化合物添加剂悬浮于废水中,调节废水的pH值至碱性。鼓入空气,用汞灯光照,它可以在1小时内,使某炼油厂炼油废碱水中40ppm一种改进的光催化处理废水中有害物质的方法,所说的光催化是使用紫外光,可见光或太阳光照射悬浮在废水中的光催化剂,同时鼓入空气或/和旋转溶液,调节废水的PH至碱性,所说的有害物质包括有机物,无机物和微生物,例如酚类,各种卤代有机物,芳香族化合物,含氮,氧有机物,氰化物,含氮、氧无机物,重金属离子,大肠杆菌等某些细菌,特别是对废水中酚的化合物,所说的光催化剂是含铁化合物或含铝化合物,例如Fe↓〔2〕O↓〔3〕、Fe↓〔3〕O↓〔4〕、FeS,以及磁铁矿、赤铁矿、黄铁矿、Al↓〔2〕O↓〔3〕、分子筛、高岭土等,本发明的特征是,在使用铁化合物或铝化合物作为光催化剂进行光催化处理废水中有害物质,特别是酚时,还要有一种添加剂参加,所说的添加剂是一种钙的化合物,特别是氧化钙和氢氧化钙,添加剂的量不低于废水中COD的量,同时与光催化剂的重量比为0.1:1~4:1。的含酚量降至0。返回搜狐,查看更多

相关推荐
  • 亚太娱乐主管-首选注册
  • 红彩娱乐-招商
  • 主页“『东信注册』”主页
  • 主页-摩杰娱乐丨主页
  • 拉菲挂机怎么下载
  • 首页\杏悦2娱乐挂机\首页
  • 新濠娱乐平台-登录
  • 任天堂娱乐-注册主页
  • 星海娱乐平台-提现快
  • 博世娱乐注册-首选登录
  • 脚注信息
    友情链接: